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Auxetic behavior from rotating triangles
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Materials with a negative Poisson’s ratio (auxetic) ex-
hibit the very unusual property of becoming wider when
stretched and narrower when compressed [1]. This prop-
erty gives a material several beneficial effects such as
increased shear stiffness, increased plane strain fracture
toughness, increased indentation resistance and improved
acoustic damping properties [1–5].

In recent years several auxetics have been manufac-
tured by modifying the microstructure of existing materi-
als, including foams [2, 6] and microporous polymers [7,
8]. A number of molecular-level auxetics have also been
discovered, proposed or synthesised including nanostruc-
tured polymers [1, 9–12], metals [13], silicates [14, 15]
and zeolites [12, 16, 17]. In all of these cases, one may
observe that the negative Poisson’s ratio results from the
very particular nano or microstructure of the material (ge-
ometry) and the way this deforms when subjected to loads
(the deformation mechanism).

A particularly interesting set of structures which exhibit
negative Poisson’s ratio may be constructed using squares
or equilateral triangles connected together through sim-
ple hinges as illustrated in Fig. 1 [11, 12, 16–19]. It has
been proposed that these systems exhibit negative Pois-
son’s ratios if when loaded, they deform through a mech-
anism where the squares or triangles remain rigid but
rotate (hinge) relative to each other. Whilst a consider-
able amount of modeling work has been performed on
the ‘rotating squares’ system [12, 16–19], no attempt has
been made as yet to derive the full compliance matrix
S for the ‘rotating triangles’ structure which would give
a full description of the mechanical properties of this
system.

To address this we present the derivation of the compli-
ance matrix S for the tessellated system built using hinged
equilateral rigid triangles of length ‘l’ which are at an an-
gle θ to each other (see Figs 1a and Fig. 2). Since this
system is a planar structure, the compliance matrix S is
a 3 × 3 matrix with components sij (i, j = 1, 2, 3) defined
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where ε1 and ε2 are the strains in the Ox1 and Ox2 direc-
tions respectively, γ12 is the shear strain in the Ox1–Ox2

plane, σ1 and σ2 are the axial stresses in the Ox1 and Ox2

directions respectively, and τ12 is the shear stress in the
Ox1–Ox2 plane.

Referring to Fig. 2, the simplest unit cell for this ‘ro-
tating triangles’ tessellation is a parallelogram such as
ABCD where the points A, B, C, and D are all tessellates
of each other. This unit cell ABCD contains two triangles
(AEF and DEG) at an angle θ ( =∠FED) to each other.
It can be shown that for proper tessellation, all the angles
in the structure (including those which are not tessellates
of∠FED, such as ∠EBG and ∠ABI) must also be equal to
θ (see Note 1). Furthermore, it may also be shown that for
all values of θ , ABCD is constrained to assume the shape
of a rhombus with side lengths L and constant internal
angles of π/3 and 2π/3 (see Note 2) where:

L =
√

2l

√
1 − cos

(
π

3
+ θ

)
(2)

Because of this, the ‘rotating triangles’ structure is con-
strained not to shear, i.e., the compliance matrix defined
in Equation 1 will reduce to:

S =



s11 s12 0
s21 s22 0
0 0 0


 =




1
E1

−ν21
E2

0
−ν12

E1

1
E2

0
0 0 0


 (3)

where E1 and E2 are the Young’s moduli for loading in
the Ox1 and Ox2 directions, respectively and ν12 and ν21
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Figure 1 The geometry of the auxetic (a) ‘rotating triangles’ and (b) ‘rotating squares’ structures.

Figure 2 (a) The definition of a typical repeat unit and unit cell, and (b) the definition of the geometric parameters.

are the Poisson’s ratios in Ox1–Ox2 plane for loading in
the Ox1 and Ox2 directions, respectively.

To derive the Young’s moduli and Poisson’s ratios, one
must consider the projections of the unit cell in the Ox1

and Ox2 directions which are given by:

X1 = L sin

(
π

3

)
=

√
3

2
L (4)

X2 = L (5)

In general, the Poisson’s ratio is not constant and varies
with strain and the initial geometry parameters and the
strain dependent Poisson’s functions ν12 and ν21 for load-
ing in the Ox1 and Ox2 directions, respectively may be
defined by:

ν12 = −dε2

dε1
and ν21 = −dε1

dε2
(6)
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where dε1 and dε2 are infinitesimally small strains in the
Ox1 and Ox2 directions respectively which are given in
terms of the unit cell dimensions by:

dε1 = dX1

X1
and dε2 = dX2

X2
(7)

where dX1 and dX2 are infinitesimally small changes in
the unit cell dimensions X1 and X2, respectively due to the
applied load. Thus, assuming the triangles do not deform
upon loading, Equations 4 and 5 for X1 and X2 may be
treated as functions of the single variable θ and hence the
strains are given by:

dε1 = 1

X1

dX1

dθ
dθ and dε2 = 1

X2

dX2

dθ
dθ (8)

i.e.:
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(9)
and
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where:
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2

(11)

Thus, from Equations 7–11, the on-axis Poisson’s ratios
are given by:

ν21 = (ν12)−1 = −dε1

dε2
= −1 (12)

The same result could have been trivially deduced from
Note 2 as systems where the unit cells are constrained to
be rhombic with constant cell angles will maintain their
aspect ratio when stretched, i.e. exhibit Poisson’s ratios
of − 1.

To derive the Young’s moduli of the structure we shall
assume that the stiffness in the structure is due to the stiff-
ness of the hinges, defined by a stiffness constant Kh. The
Young’s moduli E1 and E2 may then be derived through
a conservation of energy approach. In a continuum, the
strain energies due to small strains dε1 and dε2 in the Ox1

and Ox2 directions, respectively are given by:

U = 1

2
E1(dε1)2 and U = 1

2
E2(dε2)2 (13)

The strains dε1 or dε2 will result in a change in the an-
gles θ . The work done per unit cell corresponding to this

change in θ by ‘dθ’ is given by:

W = N

[
1

2
Kh(dθ)2

]
(14)

where N is the number of hinges corresponding to one unit
cell. Since each unit cell contains two triangles, each tri-
angle contains three vertices, and two vertices correspond
to one hinge, then in this case, N = 3.

From the principle of conservation of energy Equations
13 and 14 are related through:

U = 1

V
W (15)

where V is the volume of the unit cell. Assuming a unit
thickness in the third dimension, this volume is given by:

V = X1 X21 =
√

3

2
L2 (16)

Thus, by combining Equations 4, 5, 9–11 and 13–16 we
obtain:

E1 = Kh
3X1

X2

(
dX1

dθ

)−2

and E2 = Kh
3X2

X1

(
dX2

dθ

)−2

(17)
which simplifies to:

E1 = E2 = Kh2
√

3

(
1
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)2

= Kh
4
√

3

l2
[
1 + cos

(
π
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)]
(18)

This equation suggests that as θ increases from zero, it
approaches +∞ as θ → 2π/3 which corresponds to the
point where the structure is fully extended.

The compliance matrix for this structure can hence be
obtained by combining Equations 3, 12 and 18 to obtain:

S =



s11 s12 0
s21 s22 0
0 0 0


 =




1
E1

−ν21
E2

0
−ν12

E1

1
E2

0
0 0 0




= 1

E




1 −1 0
−1 1 0
0 0 0


 (19)

where E = E1 = E2. The off-axis mechanical properties
obtained from the standard transformation equations
[20] show that this idealised system is isotropic. This
is particularly significant as it shows that in this highly
idealised scenario where the triangles are equilateral and
perfectly rigid, the Poisson’s ratio will always assume a
constant value of − 1 irrespective of the size of the tri-
angles, the angles between the triangles and the direction
of loading. The fact that the Poisson’s ratios are inde-
pendent of the size of the triangles suggests that that this
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effect can be implemented at any scale, including at the
molecular level where the ‘rotating triangles’ geometry is
built into the nanostructure of the material. For example, it
has been shown through force-field based simulations that
a system made from ‘graphite-like’ layers each contain-
ing a planar polyphenylacetylene networked polymer can
achieve Poisson’s ratios close to the − 1 by mimicking the
‘rotating triangles’ deformation mechanism [11, 12]. Fur-
thermore, at the molecular level, the ‘rotating triangles’
geometry could be present as a projection of a particular
plane in a three dimensional structure. This type of be-
havior is thought to be present in the zeolites ABW and
JBW which have been predicted to exhibit negative Pois-
son’s ratios in the planes containing a ‘rotating triangles’
projection [12, 17].

In real materials such as the one described here, defor-
mations of the triangles will inevitably occur in parallel
with the rotations and this may reduce the extent of the
auxetic effect and allows the system to shear. The deter-
mining factor whether a material with a ‘rotating trian-
gles geometry’ exhibits conventional or auxetic behavior
would depend on which of the two deformation mecha-
nisms dominates. In the cases described above, the force-
field based simulations suggest that auxetic behavior is
retained and this is very significant as it illustrates that
the ‘rotating triangles’ mechanism can be a very effective
way for introducing negative Poisson’s ratios in real ma-
terials. We hope that these observations will encourage
further research into the subject and will eventually lead
the discovery of new materials with negative Poisson’s
ratios.

Notes:
Note 1: Proof that for proper tessellation, all the an-
gles between the triangles are constrained to be of equal
magnitude θ:

Assume that the system is constructed by tessellating
the two triangles AEF and DEG which are at an angle
∠FED = θ to each other. For any values of l and θ ,
the lines EF and HG are parallel to each other (HG is
a tessellate of EF) and hence ∠FEG = ∠EGH (alternate
angles). But, ∠FEG = ∠FED + ∠DEG and ∠EGH =
∠EGB + ∠BGH where ∠DEG = ∠BGH = π

3 . Thus,
∠FED = ∠EGB = θ . Similarly, it can be shown that
since DG is parallel to BI, the angles ∠EGB = ∠HBI =
θ , etc.

Note 2: Proof that unit cell of the system is always a
rhombus side lengths L and internal angles of π

3 and 2π
3 .

For any values of l and θ :

1. Lengths |AB| = |DC| and |BC| = |AD| as these
lines are tessellates of each other.

2. The lines LA and JB are tessellates and hence they
have equal length and are parallel to each other. Thus,

quadrilateral LJBA is a parallelogram and hence |LJ| =
|AB|.

3. The line BC is the base of the isosceles trian-
gle BHC with equal sides BH and HC of length l
at an angle π

3 + θ to each other. Thus, the length of

line BC is given by L =
√

l2 + l2 − 2 l l cos(π
3 + θ ) =√

2l
√

1 − cos(π
3 + θ ). Similarly, for LJ and BD which

are the bases of triangles LKJ and BGD which are
congruent to each other and to triangle BCH. Hence,
|LJ| = |BD| = |BC| = L .

4. Thus, from (i), (ii) and (iii), |LJ|
= |AB| = |BC| = |CD| = |DA| = |BD| = L where L =√

2l
√

1 − cos(π
3 + θ ). This suggests that triangles ABD

and DBC are equilateral for all values of θ and hence
parallelogram ABCD is always a rhombus with side
lengths L and internal angles of π/3 and 2π/3.
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